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The behaviour of a single linear array of five equally spaced semi-immersed spheres, 
absorbing energy in a single mode from a regular wave train, is studied both for optimal 
tuning and for constrained body displacement amplitudes. This is extended to con- 
sideration of two parallel rows of such devices. Finally, the spheres are replaced by 
identical bodies of a particular geometry, containing a strong angular variation, which 
are studied using a thin-ship approximation. 

1. Introduction 
Recently, Evans (1979) and Falnes (1980) have independently provided a general 

formulation for the optimal power absorption characteristics of an array of interacting 
wave power devices. Both authors illustrated the theory by considering a single linear 
array of small identical heaving buoys, or ‘point absorbers’, for various angles of 
incidence of the waves to the array; the q-factor, which describes the strength of the 
mean interaction between members of the array, was then plotted as a function of the 
(equal) spacing between the bodies. These ‘point absorbers’ can be defined as each 
possessing a vertical axis of symmetry and being such that the wave field created by 
the motion of any one of them is not influenced by the presence of the remaining array 
members. An important property of an array of identical point absorbers is that the 
precise device geometry is not required in order to  compute q. 

This paper considers the implications of the theory in more detail. If the body 
geometry is not specified then the body displacements cannot be predicted even 
though the optimal absorption characteristics are known. This is important from 
theoretical and practical considerations, since too large a body displacement violates 
the linear theory and imposes severe constraints on the device design, via the power 
take-off mechanisms. In  $ 3 the body geometry is chosen to be a semi-immersed sphere, 
for which the far-field wave amplitude due to a single heaving body has been calculated 
by Havelock (1955). Regarding the spheres as point absorbers enables their optimal 
wave-absorbing properties and their optimal displacements to be determined. 

The point absorbers contain no horizontal angular variation in their body geometry. 
I n  $ 4  thin wedge-shaped bodies are considered, absorbing energy from heave oscil- 
lations; these have been introduced previously by Evans (1979). Their geometry 
exhibits considerable angular variation and is used as a model to study the influence of 
body shape in array absorption characteristics. Furthermore, they have the advantage 
of permitting an expli’cit expression for the exciting force, dependent solely upon the 
incident wave potential, because of the ‘ thin-ship ’ assumption. 
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2. Theory 
We consider an array of N absorbers constrained to make small oscillations in one 

mode of motion and of radian frequency o in response to a regular incident wave train 
of elevation A cos (KX cos p + KY sin pi-  w t )  in water of infinite depth. In this co-ordinate 
system the horizontal O x y  plane is coincident with the mean water level and the 
z axis is positive in the vertically upwards direction. The angle p is defined such that 
the incident wave train makes an angle T i- ,4 with the positive x axis. 

The power which such a system can absorb has been shown by Evans (1979) to be 

P ( p )  = &X:B-lX,- B(U,- $B-'X,)* B(U0- &B-'X,). ( 2 . 1 )  

A derivation of this result is given in the appendix. Here X, and Uo are column vectors 
representing the complex time-independent component of the exciting force and body 
velocity respectively, i.e. the exciting force on the mth body due to the incident wave 
train when all bodies are held fixed and the velocity of the rnth body when the system is 
allowed to respond to the incident wave are given by Re {X,(P) eiwt) and Re { Uh(P) efot) 
respectively. In equation ( 2 . 1 )  * denotes the conjugate transpose. 

The N x N real symmetric matrix B is the usual radiation-damping matrix and, by 
application of Green's theorem and the method of stationary phase, it  can be shown 
that the matrix B is related to the exciting forces in deep water by 

where h is the wavelength of the incident wave, P, = pgzA2/40  is the power per unit 
frontage of the incident wave and the overbar on X,,(O) denotes the usual complex 
conjugate. This result for N bodies in one mode of motion has been given by Srokosz 
(1979) and a brief outline of the derivation is given in the appendix. It is assumed here 
that 6-1 exists; discussion of the validity of this assumption is contained in both Evans 
(1979) and Falnes (1980). 

The expression for the power absorption ( 2 . 1 )  can be maximized with respect to the 
body velocity to obtain 

which occurs when U, = BB-lX,. This maximization procedure involves the tuning 
of both the amplitude and phase of each of the body oscillations to the quantities 
specified above in terms of the exciting forces on each of the array members. 

A further important quantity is the absorption length labs, defined as the width 
of a two-dimensional wave train having the same mean power as the body extracts: 

Pma, = &X,hB-lX,, ( 2 . 3 )  

( 2 . 4 )  

In particular, when the system is performing optimally we have labs = 
defined bv 

which is 

This can be written 

( 2 . 5 b )  
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for heave motions. The quantity h / 2 n  is just the maximum absorption length for a 
single heaving point absorber (h/n for surge or away modes) so that q(P) represents the 
mean gain factor for each member of an interacting system of N members as compared 
with the absorption length for a single point absorber. 

The exciting forces on each of the array members are related to the corresponding 
radiation problem. If the mth body alone is forced to  oscillate a t  radian frequency w 
with unit velocity amplitude and all other bodies are held fixed, then the potential 
function describing the motion has the following asymptotic behaviour, in cylindrical 
polar co-ordinates, a t  large distances from the body : 

@,(It, 8, z ,  t )  - Re {g m (8) R-) eKZ--iKR+iWt 1 . ( 2 . 6 ~ )  

The quantity g,(8) must contain both the angular variation of the wave amplitude 
and a phase factor due to the mth body not being positioned a t  the origin. These two 
characteristics can be separated by writing gm(8) in the following way: 

gm(8)  =fm(O)~'exp [iKlmcos(p-am)I, (2 .6b )  

where 1, and am are the distance from the origin and the angular displacement measured 
from the 2 axis respectively andfm(8) is usually referred to as the far-field amplitude. 
For one body in one mode of motion, the exciting force was first shown to be related to  
the far-field amplitude by Newman (1976) .  Here we give the extension of that result 
for N bodies in one mode of motion due to  Srokosz (1979):  

which is obtained on substitution from (2 .6b )  into equation ( A 2 )  of the appendix. 
Accordingly, to  solve the optimal problem completely it is necessary to know either 

the far-field amplitudes or the exciting forces. In  particular, from ( 2 . 2 ) ,  ( 2 . 3 )  and 
( 2 . 5 b )  we have 

P ( P )  = x-,*,(P) [Gj X,,(@ K&wJ] -l  X,,(B), ( 2 . 8 ~ ~ )  

where repeated suffixes denote summation and where [ ]if denotes the (m, n)th term 
oftheinverseofthe matrix whose (i,j)thtermisgiveninthe[ ].Foranarrayofidentical 
bodies which produce little or no diffracted wave field, then it is readily seen that only 
the angular dependence contained in X,(P), or alternatively f,(P) is required to 
calculate q(p) or ZgbS(P). This property has already been employed by Evans (1979)  
in the study of point absorbers and thin ships. However, if the corresponding body 
displacements are required, then these are given by the non-dimensional column 
vector D, such that the displacement of the mth body is Re {ADmeiwt}, which at optimal 
tuning is 

(2 .8b )  D = - -  B-IX, 
2wA 

1 2n 

0 mn 

8 

and this is clearly dependent on the body geometry properties contained in X,. 
For an array of heaving point absorbers, i.e. bodies of revolution oscillating vertically 

along their axes, the consequences of ( 2 . 8 a ,  b )  are clear: while q(p) remains largely 
independent of body size, this is not so for the body displacements and the linearizing 
assumptions of the theory may well become invalid for certain body sizes and wave 
frequencies. 
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Large body displacements are also undesirable from a physical viewpoint since they 
introduce practical problems in device construction and operation. Consequently it 
may become necessary to constrain the body displacements so that they do not exceed 
a specified multiple of the incident wave amplitude and this can be done by damping 
the body motions accordingly. If the absorption length labs is written in terms of X 
and D (D = -iU,/wA) then from (2.1) and ( 2 . 4 )  we have 

i K  2WK 
labs = -[X:D-D*X,]--D*BD, 

PS A PS 

where the body motions are still assumed to have an eiat time dependence. The quantity 
labs, for known X,, can be regarded as a function of the 2 N  variables comprising the 
amplitude and phase of each body displacement. This expression can be maximized 
numerically subject to the constraint that the body displacement amplitudes must not 
exceed a specified value, and the appropriate values of labs, amplitudes and phases 
can be found. These may then be compared with those obtainedatoptimaltuning and, 
of course, the values will coincide if the optimally tuned body displacement amplitudes 
are all smaller than the value specified by the constraint. 

The theory given above is applicable to an array of N bodies in only one mode of 
motion, but there is no intrinsic difficulty in extending the theory to  describe N bodies 
in M modes of motion, for any value of M > 1 provided each mode is capable of 
independently absorbing energy from the waves. 

I n  order to use the preceding theory it is necessary to  know either X,, or fm(8) for 
each rn. This is a difficult problem for an array of arbitrary body shapes and analytic 
solutions are only known for single bodies with particular simple geometries. Accord- 
ingly, we use the approximation, introduced by Evans (1979), that the angular 
function fm(0) does not depend on the presence of the other bodies; this may be 
equivalently stated that the bodies are small enough not to produce a significant 
diffracted wave field. Furthermore by consideration only of arrays of identical bodies 
operating in the same mode, the above approximation shows that if fm(8) is known for 
the mth body then it is known for all the other bodies also. It is felt that  this is 
probably a good approximation provided that the bodies are not too close together. 

3. Arrays of heaving semi-immersed spheres 
The simplest body geometry for which the far-field amplitude f ( 0 )  is known 

analytically is for a single heaving semi-immersed sphere. The solution has been given 
by Havelock (1955) and in the co-ordinate system used here f (8) takes the form 

f (0)  = ~a2(27r )J  SZ e+"+ix, ( 3 . 1 )  

where K is the wavenumber of the generated wave train and a is the radius of the sphere. 
As expected, the quantity f (0) is independent of 8. 

The constants SZ and x which appear in ( 3 . 1 )  are both real and dependent upon K a .  

In  terms of the constants C and D used by Havelock CI and x are defined by 

Reix = C - iD. 
The constants C and D can be regarded as known functions of K a  so that SZ and x are 
also known everywhere. 

( 3 . 2 )  
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FIGURE 1. Plan of double-row array subject to incident wave train with arbitrary angle of 
incidence p. Bodies indicated by the same letter undergo the same displacement amplitude at 
optimal tuning. For the special cases of head and beain seas B = D and A = E (symmetry text 
given in 3 b ) .  

In  order to study the influence of the body spacing at  a particular wave frequency 
it is necessary to fix the parameter K a  and the value chosen was K a  = 0.4. This value 
corresponds well with the envisaged dimensions of full scale devices. For example if the 
incident wavelength is 150 m then the value of the sphere radius is 10 m. Additionally, 
the value of C and D were only given by Havelock for K a  = 0.4, although this is not 
an important consideration since Havelock's calculations were repeated to obtain C 
and D (and hence Q and x) in the range 0 < K a  < 5.0; this data was required so that 
the variation in the properties of a fixed array could be studied if necessary. For a single 
semi-immersed body, Evans (1976, fj 7) has shown that the large natural buoyancy- 
restoring force can introduce difficulties when tuning the device to certain prescribed 
frequencies; this problem is acknowledged but plays no part in the optimal formulation 
described here. 

Two array configurations are considered. The first consists of a row of five equally 
spaced bodies and the second has two parallel rows of five equally spaced bodies 
forming a rectangle. These are shown in plan in figure 1. For the single row the bodies 
lie along they axis and are numbered such that the first body lies at the origin and the 
fifth a t  y = 4d. 

( a )  The single row 

We consider first the simpler case of the single row when the system is optimally tuned. 
The form off(0) given by (3.1) is substituted into (2.7), (2.8a), (2.5b) and (2.8b) to  
obtain @), l,,&?) and the appropriate body displacements as functions of K a  and K d .  

With K a  = 0.4, the above quantities were calculated numerically for K d  in the range 
0.8 < K d  < 10; the lower limit corresponding to the case where the buoys are touching 
and the upper limit to the case where the buoy centres are 12-5 sphere diameters apart. 
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FIGURE 2. Variation of the mean gain factor q with the non-dimensional body spacing Kd for an 
optimally tuned single row of five equally spaced semi-immersed spheres for different values of 
the angle of incidence p. --, ,8 = 0 (beam seas), &?T (head seas); - - -, p = in. 

The variation of q with Kd is shown in figure 2 for both beam (/3 = 0 )  and head 
(/3 = in) seas. At optimal tuning the array is generally more efficient in beam seas than 
in head seas, the exception being when the bodies are close together, corresponding to  
K d  < 2.65 or d / 2 a  < 3.31, where the approximation used to obtainf,(O) from the single 
body result is least applicable. 

For beam seas, q takes a maximum value of about 2.25 a t  K d  N 5-1, indicating a 
favourable interaction between members of the array. The minimum value of q is 
approximately 0.57 occurring a t  Kd N 6.75 when the bodies are slightly greater than 
one wavelength apart. This illustrates the critical importance of the body spacing 
parameter: for the value of K a  chosen and for the range of Kd used, the maximum and 
minimum values of q occur within roughly a variation of 2.2  body diameters of each 
other in the spacing. 

In  the head seas case, the interaction is usually unfavourable (i.e. q < 1) with the 
behaviour of q appearing to  settle to a near-periodic function of K d .  The range of q for 
K d  > 3 (i.e. away from the region where the analysis is least valid) is approximately 
0-5 < q < 0.96, with the minima occurring when array members are integral multiples 
of half or full wavelengths apart, i.e. when K d  = nr for integer n. There does not appear 
to be an obvious physical analogue for describing the positions of the maxima. 

The behaviour of q for an angle of incidence p = in is also shown in figure 2 (as a broken 
line). This is included here for completeness to illustrate the transitional stage between 
the beam and head sea cases. As expected the maximumvalue of y ( 4 n )  is greater than 
that of q(head), but less than the maximum of q(beam). Henceforth, we consider only 
beam and head seas. 
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FIGURE 3. Variation of the body displacement amplitudes/incident wave amplitude with body 
spacing for the optimally tuned single row of five semi-immersed spheres in beam seas. The 
number next to each curve denotes the appropriate body motion. 

K d  

Body I 
displacement 
amplitude 

6 

0 1 2 3 4 5 6 I 8 9 10 

FIGURE 4. As for figure 3, but in head seas. 
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Relative 
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FIGURE 5. Variation of the relative phase, i.e. the phase difference between two adjacent bodiep, 
with the body spacing for the optimally tuned single row of semi-immersed spheres in head seas. 
__ , the relative phase of the (first and second) and (fourth and fifth) bodies; . . . , the (second 
and third) and (third and fourth) bodies; - - - , a constant phase difference of - Icd. 

The body displacement amplitudes for beam and head seas are shown in figures 
3 and 4 respectively. I n  each case, since the array operates in an optimal manner, the 
displacements are symmetric about the mid-point of the array as shown by Evans 
(1979). For beam seas, the displacement amplitudes are seen to be generally consider- 
ably larger than the incident wave amplitude (which has unit amplitude on this scale), 
so that the favourable interaction shown in figure 2 is achieved with a possible viola- 
tion of the linearization assumptions. Relative to each other, all the bodies are in 
phase for K d  > 2.1. 

In  head seas, figure 4 shows that the displacement amplitudes are typically of the 
order of two or three times the incident wave amplitude, with the largest amplitudes 
corresponding to  the largest values of q(head) shown in figure 2. The curve for the 
second and fourth bodies is not shown, simply because it lies very close to  the two which 
are given and would not illustrate any new features of the motions. Intuitively, for 
small bodies the phases of the array members might be expected to  correspond t o  the 
phase of the incident wave moving down the array. If is this were so then the phase 
difference between any two adjacent bodies would be - ~ d  in the direction of wave 
propagation. 

The relative phases between adjacent members of the array are shown in figure 5 .  
From symmetry arguments the phase difference between the (first and second) and 
(fourth and fifth) bodies must be the same; likewise for the (second and third) and the 
(third and fourth), but no relationship is suggested to link the first, second and third 
bodies together. It is seen from figure 5 that  for K d  > 3 the difference in phase between 
the (first and second) bodies is generally close to - K d .  The phase difference between the 
(second and third) bodies is indicated by the dotted line and i t  too lies close to - K d ,  the 
differences which occur being due to the interaction mechanism. 

It is readily seen from figures 2 and 5 that q(head) takes its minima whenever the 



Arrays of three-dimensional wave-energy absorbers 75 

t i 

0 1 2 3 4  5 6 7 8 9 10 
Kd 

FIGIRE 6. Variation of the non-dimensional absorption length labs/ 1Ou with body spacing for the 
single row of semi-immersed spheres in beam seas. -, optimal unconstrained motion; . . . , 
constrained motion, maximum body displacement < three times incident wave amplitude ; 
- - -  constrained motion, maximum body displacement < twice incident wave amplitude. 

phase difference between adjacent bodies is - K d ,  i.e. when Kd = nn. The importance 
of the relative phases (and hence the interaction mechanism) depicted in figure 5 has 
been studied numerically. Preliminary results for different values of K d ,  with K d  > 3, 
suggest that, if all of the relativephasesare constrained tobeexactlyequalto - K d ,  then 
the corresponding value of the maximum absorption length, obtained from a numerical 
optimization of equation (2.9)) can be as much as 25 yo less than the value at optimal 
tuning. 

The large body displacements a t  optimal tuning in beam seas, shown in figure 3, 
illustrate the desirability of constraining the body displacements when necessary so 
that the linear theory is not violated. Further justification for such a procedure has 
already been given in $ 2 .  Accordingly, using (3.1) and (2.7), we optimize (2.9) numeri- 
cally, using a standard computer library procedure, subject to the constraint that the 
displacement amplitudes do not exceed certain prescribed multiples of the incident 
wave amplitude. The results of such optimizations are shown in figure 6, in which the 
amplitudes are constrained to be less than two and three times the incident wave 
amplitude. For comparison with the result a t  optimal tuning, the curve corre- 
sponding to the unconstrained motion is also shown. 

The quantity plotted against K d  is Eabs/lOa, where labs is the absorption length as 
previously defined and 10a is the frontage to the incident wave in beam seas of five 
semi-immersed spheres eachof radius a. Using the definitions given in (2.4) and (2.5), 
it is clear that with KU = 0.4 the favourable criterion q > 1 corresponds to 

Z,bs/lOa > 1.25. 
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FIGURE 7. Variation of the mean gain factor q with body spacing for an optimally tuned double 
row and an optimally tuned single row of semi-immersed spheres in beam seas. The spacing 
between the rows of the double row is equal to the spacing between adjacent members of each 
row, i.e. c = d. --, double row; - - -, single row. 

However, if 1 < I,b,/lOa < 1-25 then, although the array doesnot perform collectively 
as well as the sum of five individual absorbers, it does absorb more power than is 
incident on the individual members. 

Figure 6 shows that if the displacements are constrained to have magnitudes of up 
to twice the incident wave amplitude then the criterion q > 1 is only achieved very 
near to the optimum spacing Kd 2: 5. If a factor of three times the incident wave 
amplitude is permissible then a curve much nearer the optimum is achieved, although 
at  optimal tuning figure 3 shows the relative amplitudes of the body displacement and 
the incident waves to be often considerably greater than three. Thus even with con- 
straints of this type the array can perform acceptably well. The phases in the con- 
strained motion are similar to those at optimal tuning, i.e. the bodies move in phase 
for K d  > 2.1 but not otherwise. 

( b )  The double row 

The results presented so far have only been concerned with a one-dimensional array 
positioned on they axis, with uniform spacing between the individual bodies. The next 
step is to consider two-dimensional arrays of the type shown in figure 1, and which have 
been described previously. Two arrays were studied: in the first the bodies were 
uniformly spaced in both directions, i.e. c = d, and in the second the spacing in the 
x direction was half that in the y direction, i.e. c = i d .  

The q-factor for an optimally tuned double row with c = d in beam seas is shown in 
figure 7 and the appropriate curve for a single row from figure 2 is also given so that 
the two may be compared. The two curves are similar and, although not illustrated, 
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FIGURE 8. Variation of the non-dimensional maximum absorption length ZmJIOu with body 
spacing for optimally tuned single and double rows of semi-immersed spheres in beam sew. The 
double row spacings are c = d and c = ?& (indicated by a broken line). 
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FIGURE 9. As for figure 8, in heed seas. 

similar behaviour is also exhibited by the corresponding c = i d  curve. However, the 
local behaviour of the c = d curve does indicate some interesting features. 

There are pronounced local minima when the spacing is either half or one incident 
wavelength i.e. when KC = K d  = n or 27r whilst for Kd > 27r the curve becomes oscil- 
latory. With the exception of the regions surrounding Kd = n and 2n, the q-factor for 
the double row is generally marginally better than for the single row, but both curves 
have approximately the same maximum value of about 2.24 at  Kd 2: 5 .  It should be 
remembered that this implies that the double row extracts double the power, however, 
as in this case AT = 10 in (2 .5b ) .  
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FIGURE 10. Variation of the non-dimensional maximum absorption length 2,,,/1Oa with 
frequency KCZ for an optimally tuned row of five equally spaced semi-immersed spheres in beam 
seas. The spacing between the bodies is fixed at d = 1 2 . 5 ~ .  ---, Zmax/lOa for unconstrained 
optimal motion; . . , , Zabs/lOa for constrained motion, maximum body displacement < three 
times incident wave amplitude; - - -, mean gain factor q = 1.  

This is illustrated by considering the non-dimensional maximum absorption length 
Z,,x/lOa for optimally tuned arrays in beam and head seas as shown in figures 8 and 9 
respectively. It is readily seen that for both beam and head seas the double rows 
almost always perform better than the single row, the exception being in head seas 
for c = i d  in the physically uninteresting region of K d  c 1. 

The body displacements corresponding to the calculations depicted in figures 8 and 9 
have also been obtained. Symmetry arguments analogous to those presented by Evans 
(1979) must hold for all angles of incidence and the bodies whose amplitudes must be 
equal for an arbitrary angle of incidence /3 are shown in figure 10, in which bodies given 
the same letter have the same displacement amplitude. For the special cases of beam 
and head seas, further simplication is possible and in both of these cases, in the notation 
of figure 1, we also have A = E and B = D ,  thus giving only three different amplitude 
values. The magnitude of the amplitudes follows the same trends as shown for the 
single row and confirms that the more power absorbed the larger the body displacement 
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FIGURE 11. As for figure 10, in head sew. 

amplitude. It is also possible to constrain the body displacement amplitudes in the 
way described previously for the single row (as illustrated in figure 6). 

The results obtained for the double row subject to the constrained optimization 
technique, are qualitatively similar (though multiplied by a factor of 2, since there 
are twice as many bodies) to  those for the single row and consequently are not shown. 

( c )  The variation of optimal absorption properties with frequency 

In the previous work the incident wavelength and body radius have been kept fixed 
and only the spacing has been allowed to vary. Equally important is to  assess how the 
optimal absorption properties vary with frequency, for fixed body radius, and spacing. 

The parameters Ka,  Kd for a, d fixed are both measures of wave frequency; K a  will 
be used here. To determine an appropriate value of d / a  we can use the work already 
presented. When K a  = 0.4, we know from figures 2 , 7  and 8 that in beam seas both the 
single and double arrays perform best when K d  is close to 5 and accordingly this value 
is used for K d .  In  physical terms if a = 9.55 m, corresponding to K a  = 0.4 in 150 m 
waves, then d / a  = 12.5 (i.e. Kd = 5 when K a  = 0.4) implies that  d has avalue of approxi- 
mately 120m. Although we are only considering optimal motions the choice of 
d / a  = 12.5 based on the known results for K a  = 0-4 is in effect a partial tuning of the 
system. 
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The variation of the maximum absorption length lmaX/lOa with the frequency 
parameter, for the single row, in beam and head seas is shown in figures 10 and 11 
respectively. The broken line which appears in each figure is the curve corresponding 
to q = 1 and is included so that the strength of the interaction at each frequency can 
be gauged. 

In  beam seas the outstanding feature demonstrated in figure 10 is the minima which 
are achieved whenever K d  = 12.5 x K a  = 2nn, for integer n, corresponding to situations 
where the array members are integral multiples of the incident wavelength apart. 
A similar phenomenon has been shown to exist by Srokosz (1980), in the study of the 
behaviour of an infinite array of devices. There are, however, two important differ- 
ences between our results and those of Srokosz; both are directly attributable 
to the array having a finite length. Firstly, the minima are non-zero, whereas those of 
Srokosz are genuine zeros. Secondly, for K d  < 2n (i.e. K a  < 0.5), the infinite array 
theory predicts a constant value of Zmax/5d = 0.5 giving, with d / a  = 12.5, 

but this is not so for the finite length array, which suggests that lm~x/lOa -+ 00 as 
K a  -?- 0. 

The head seas result is equally interesting, exhibiting minima whenever the bodies 
are multiples of half or whole wavelengths apart. A feature of this curve is that the 
q = 1 curve behaves like an upper bound on the lmax/ lOa curve except for the longest 
waves, i.e. when KU < 0.22, corresponding to h > 270m for a = 9.55m. This cannot 
be compared with the infinite array case, since Srokosz’s theory is only applicable to 
beam seas. 

The body displacement amplitudes have also been calculated. As a simple illustration 
of these, we show as dotted lines in figures 10 and 11 the curves for Eab,/lOa corre- 
sponding to the displacement amplitudes constrained to be less than three times the 
incident wave amplitude. The Zmax and labs curves, for both the head and beam seas 
cases, are coincident except for the longest waves where, as expected, the array 
members experience large displacements to achieve a high level of power absorption. 

The optimal curves shown in figures 10 and 1 1  correspond to a system which is 
essentially optimally tuned at  all frequencies. In practice this is not possible and it 
would be necessary to tune the system mechanically to one particular frequency. If the 
tuning was for a = 9.55 m, d = 120 m at incident waves of 150 m, then the optimal 
value would be attained at  K a  = 0.4. 

4. An array of heaving thin ships 
The semi-immersed spheres studied in 5 3 possess a vertical axis of symmetry and 

consequently the far-field amplitude produced by a single heaving buoy contains no 
angular dependence. In practice, many of the wave power devices presently under- 
going development are not axisymmetric and often exhibit a strong angular variation 
in the body geometry which will obviously manifest itself in the form of the far-field 
amplitude. 

However, most of the devices under consideration are not readily amenable to 
simple analytic treatment and calculation of the exciting force or far-field amplitude 
usually involves detailed numerical work. For more realistic models of these devices 



Arrays of thee-dimensional wave-energy absorbers 81 

Y 

I 
FIGURE 12. Diagrammatic sketch of thin ship and plan of five 

uniformly spaced thin ships in a single row. 

we require a body shape which contains a strong angular dependence and which has a 
simple analytical representation. An appropriate body is the ‘thin ship ’, absorbing 
energy through small vertical (heave) oscillations, used previously by Evans (1979). 

The ‘thin ship’ has beam 2 ~ ,  draft H ,  and length 2L. The heave exciting force is 
obtained by integrating the incident potential over the surface of the body and 
neglecting the diffracted wave field. This can be justified provided s / H ,  s / L  < 1, and 
AIL = O( 1). See Newman (1977, pp. 305-306). A derivation of the exciting force is 
given in the appendix, where it is shown that 

I n  computing the maximum power, we choose KL = 1 so that in 150m waves the 
thin ship has length 48 m which is typical of isolated terminator wave-energy devices 
such as the Bristol submerged cylinder device (Quarrel1 1978) and which also satisfies 
the condition KL = O( 1) required by the thin-ship theory. The other two parameters, 
s/L and H/L, are constrained by the demands of the thin-ship approximation and 
accordingly we use the values E = L/lo and H = L.  

Substitution from (4.1) into ( 2 . 2 ) ,  (2.3) and (2.5a, b ) ,  with the values of KL, s / L  and 
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FIGURE 13. Variation of the mean gain factor q with non-dimensional body spacing tcd for an 
optimally tuned, single row of five uniformly spaced thin ships in beam and head seas. + + + 
(. . . . . .), the corresponding curves from figure 2 for five semi-immersed spheres in beam (head) 
seas. - - -, the values corresponding to qt = 1 in beam (the upper line) and head seas. 

K d  

H I L  specified above, enables the q-factor and maximum absorption length to be 
calculated for any particular array. The results presented here correspond to a single 
row of five uniformly spaced thin ships in line, analogous to the row of semi-immersed 
spheres considered in 3 3 ( b ) ,  and the schematic layout is shown in figure 12. The range 
Of K d  used is 2 < Kd < 10, where the lower limit corresponds to the situation where the 
bodies touch. 

The q-factors for a single row of thin ships in both beam and head seas are shown in 
figure 13 together with the corresponding curves for point absorbers from figure 2. 
Note from ( 2 . 5 b )  that the q-factor is the mean improvement or otherwise of an inter- 
acting system of N bodies upon the absorbing properties of N independent point 
absorbers. Thus, for an array of thin ships, q > 1 shows that the array works more 
favourably than N independent point absorbers, but not necessarily more efficiently 
than N independent thin ships-since the data necessary to make such a statement 
has not been introduced. Accordingly, when comparing bodies of different shapes, the 
q-factor is best regarded as a measure of maximum power absorption. 

A comparison between the thin ship and point absorber curves, for either beam or 
head seas, shows the two curves to have essentially the same characteristics; the 
difference lies only in the magnitude of q(p). I n  beam seas the thin ships always interact 
to absorb more energy than the point absorbers, whereas in head seas the reverse is 
true. These results would be expected from the simplest physical argument if no inter- 
action were present: with K a  = 0.4 and K L  = 1 each thin ship presents 2.5 times more 
frontage to the incident waves in beam seas than the semi-immersed spheres do and 
consequently has more power readily available without drawing in power from the 
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sides. I n  head seas with KE = 0 . 1 ~ L  = 0.1 the spheres show four times as much 
frontage to the incident wave as the thin ships and can thus readily absorb more power. 
This argument, while not accounting for the importance of the interactions between 
array members, does depend crucially on directionality. 

If the eEciency of the thin-ship interaction is required, then it is necessary to define 
the q-factor appropriate to thin ships, and which is denoted here by Q(P). 

The generalization of (2.56) for any body shape is 

and from Evans (1979, equation (2.14)) the maximum absorption length Zmax(P, 1) 
for a single rectangular thin ship is 

A 
L a x ( P ,  1)  = G M ( K L , P ) ,  (4.3) 

where M(KL,P) = sin (KLS~I I ,~ ) ]~ , / [  - 1 [sin ( ~ L s i n B ) ] ~ ~ ~ ]  

I 2 r  271. KLsini.9 

Using the definitionsofQ(P) andq(P) from (4.2) and (2.5b), with the form oflmax(P,l) 
given by (4.3), it is readily seen that Q(P) and q(P) are related by 

%(P) = M(KL, P )  StCP,, (4.4) 

where the suffix t denotes the ‘thin-ship’ result. The interactive effect of N thin ships 
compared to N independent thin ships is favourable whenever 

Qt(P) ’ 1 01‘ ’ M ( K L P ) ,  

which contains an angular dependence proportional to the square of the far-field 
angular variation. The values of M(KL,P)  for beam and head seas with KL = 1 are 

M(1,O) = 1.1778, M(1,Bn) = 0.8340 (4.5) 

and these are shown in figure 13 as broken lines. 
If we require the relative efficiency of an array of point absorbers to an array of thin 

ships at optimal tuning, then it is necessary to  compare qp(P)  with Qt(P). Here the 
sufix p denotes the ‘point-absorber’ result. With use of (4.4) this is equivalent to  
comparing qp to q , / i t f ( K L , P )  and it can be seen from figure 13 that  the pairs of qJP) 
and Qt(P)  curves will come even closer together. Hence we have the interesting result 
that  the interactive efficiency of a row of point absorbers and thin ships is very similar 
in both beam and head seas whilst the actual amount of power absorbed depends 
upon the properties of the body shape. This suggests that array spacing can be decided 
on the basis of results for a simple system such as point absorbers, whilst body 
geometry effects can be explored by considering a simple body in isolation. 

The body displacements a t  optimal tuning could be presented as in figures 4 and 5 
for the semi-immersed spheres and then if required we could perform the constrained 
optimization procedure illustrated in figure 6. However, using the guide that the more 
power the array absorbs the larger the individual displacements, we can restrict 
attention to a comparison between the maximum and constrained absorption lengths. 
The procedure for obtaining the absorption length subject to  constraints on the 
individual body displacement amplitudes has been described previously in $ 3  ( b ) .  
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FIGURE 14. Variation of the non-dimensional absorption lengtth Zabs/lOL with body spacing for 
the single row of five thin ships in beam seas. -, optimal unconstrained motion (i.e. ,!,JlOL) ; 
. . . , constrained motion, maximum body displacement < three times incident wave amplitude; 
- - -, constrained motion, maximum body displacement < twice incident wave amplitude. The 
scale Zab8/10u is also shown to enable comparison with figure 6. 

The maximum and constrained absorption lengths, l,,x/lOL and l,b,/lOL, are 
plotted against K d  for beam seas in figure 14, with the displacement amplitudes being 
constrained to be less than two and three times the incident wave amplitude. The 
absorption lengths are non-dimensionalized with lOL, since 1OL is the total frontage 
of the array to the incident waves. If a comparison with figure 6 is to be made then the 
scale for labs ,I 10a must be known and this is also shown in figure 14. 

Comparison of l,b,/lOa in figures 6 and 14 shows that the constraints have a more 
severe effect on the performance of the thin ships than on that of the semi-immersed 
spheres and the implication (confirmed by calculations) is that  the thin ships undergo 
larger displacements at optimal tuning than the semi-immersed spheres. Similar 
results are found for head seas, but these are not illustrated here. It is important to 
note that the individual body displacements are dependent upon the body geometry 
and for the thin ships with KL = 1 the displacements will vary for differing values of 
KE and KH, consequently changing the constrained curves, while the curve corre- 
sponding to optimal tuning remains unchanged (though the corresponding body dis- 
placements may change). Our results for constrained motion apply only to  the case of 
KL = KH = 1 andKc = 0-1. 

For both beam and head seas the body displacement amplitudes a t  optimal tuning 
are symmetric about the midpoint of the row. The result in fact holds a t  any arbitrary 
angle of incidence for any optimally tuned uniform row of similarly aligned identical 
devices which possess two vertical mutually perpendicular planes of symmetry, pro- 
vided the assumptions made here concerning the diffracted wave field remain valid. 
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FIGURE 15. Variation of the mean gain factor q with non-dimensional body spacing K d  for 
optimally tuned equally spaced single rows of two, three, five and ten point absorbers in beam 
seas. The heavy solid line corresponds to the infinite array limit given for K d  < 27r by Evans 
(1979) and for general K d  by Srokosz (1980). 

This general result follows directly from the same arguments as those presented by 
Evans (1979). 

5.  Discussion 
The results given in this paper are for five uniformly spaced identical bodies (or two 

parallel such rows) in beam and head seas. The calculations were made for rows com- 
prised of two, three, five and ten bodies, for both the optimally tuned and constrained 
motions of the semi-immersed spheres and ‘thin ships’, with the three angles of 
incidence p = 0 (beam seas), an, Qn (head seas). Clearly it is not possible to present all 
of the available data and it is felt that the important features of the interactions can 
be demonstrated by choosing five bodies (or ten, in the case of the double row) in beam 
and head seas. These two angles of incidence provide data which is relatively easy to 
interpret, and furthermore they provide possible modelsfor two classes of wave-energy 
devices, terminators and attenuators, which are designed to operate efficiently in 
beam and head seas respectively. 

The choice of five bodies was made after study of all the data and was also guided 
by the need to model possible physical array configurations. As an example of the 
variation of the optimal array properties with the number of bodies we present in 
figure 15 the behaviour of the mean gain factor q with body spacing Kd for two, three, 
five and ten point absorbers in beam seas. The heavy solid line corresponds to the 
infinite array limit; this was first given for Kd < 2n- by Evans (1 979) and for all values 
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of Kd by Srokosz (1980). Note that, from the infinite array analysis of Srokosz, all 
bodies have the same displacement amplitude a t  optimal tuning; for five bodies this 
is not so (as shown in figure 3) and is directly attributable to  the array being of finite 
length. 

6. Conclusions 
The maximum amount of wave power that can be absorbed by both a single and 

double row of five vertically oscillating floating bodies in a regular incident wave train 
has been estimated. The bodies chosen were semi-immersed spheres in one case and 
thin wedge-shaped bodies in the other. The simple shapes chosen enabled explicit 
analytical forms to  be derived for the maximum absorbed power when the waves 
approach a t  any angle. 

It was found that the improvement in maximum power absorption of a given array 
over a single member of the array in isolation was influenced primarily by the spacing 
and not by the particular body geometry. The latter governed the actual power 
absorbed, being larger for the elongated thin bodies in beam seas and less in head seas 
than for the sphere. This reflects the relative wave-making ability of the thin body 
perpendicular to and in the direction of its axis. When constraints were imposed on the 
amplitude of the body displacements, the thin body suffered a greater drop in power 
absorption than the sphere; this being due to the poor wavemaking capability of the 
‘thin ship ’ in heave compared to the sphere. 

The results of this paper suggest that the spacing between members of an array of 
bodies should be just less than a wavelength to achieve maximum absorption in beam 
seas and that this conclusion is largely independent of the shape of the body. It is 
anticipated that suitably spaced elongated bodies absorbing energy through horizontal 
motions in the direction of the incident waves, will achieve a further improvement in 
maximum energy absorption even when constrained, provided they have good wave- 
making characteristics. 

However, it must be emphasized that the above conclusions are valid only for 
arrays which satisfy the approximations made in this paper, that  is, for arrays where 
the wave field created by the motion of any one member is not influenced by the 
presence of the remaining bodies. Further work is essential to  determine the exciting 
force on an array of full-bodied elongated absorbers to assess their potential wave- 
absorbing capacity. 

Appendix 
Maximum power absorption by an array of bodies 

We consider N independently oscillating bodies each capable of absorbing wave 
energy through its motion in a single degree of freedom. The i th component 4, of the 
exciting force vector F, is the force, in the direction of subsequent motion, on the ith 
body assuming all bodies are held fixed. Under the assumption of simple harmonic 
motion of radian frequency w ,  we write F, = Re {Xseiwt}, and U = Re (U,,eiwt}, where 
U is the velocity vector whose ith component is the velocity of the i th body. M and B 
are the generalized added mass and damping matrices for the system which contribute 
to  the total hydrodynamic force vector for the system. 
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Thus F(t) = FJt) - MU(t) - BU(t). The mean rate of working of the hydrodynamic 
forces on all the bodies is 

P = F’(t) U(t)t = Ff(t) U(t)t - UTBUt, 

where -t denotes time average and T denotes the transpose. 

Hence P = +Re {X: U,> - +Ut BU, 
- - 8  ‘X* s B-’X,- $(U, - $B-’X,)* B(U,- HB-lX,) 

after some elementary manipulation, in agreement with (2.1). 

The relationship between the damping matrix and the exciting forces 
For the system of bodies described above in (i), the potential function @ is usually 
written as the sum of potentials describing the diffractive and radiative components 
of the motion 

where 4, + is the scattering potential satisfying a($, + Qd)/an = 0 on each of the 
bodies. The radiation potentials $j satisfy &&/an = nj  ajK for K = 1, . . . , N and hence 
only contribute on the j t h  body; the quantity tj being the displacement of the j t h  
body. 

The real generalized added mass and damping matrices, M and 6, depend only on 
the radiation potentials and are given by 

Applying Green’s theorem to $i and $i, together with the symmetry properties of 
illij and Bii, enables Bii to be determined in the form 

where S, is taken to represent a large vertical circular cylinder containing the array. 
The asymptotic behaviour of the potentials is known to be q5, - gi(0) R-h e-iKH+KZ 
and hence 

The exciting force on the ith body F,, = Re(Xsieiwt) = R e ~ i w ~ ~ s i ( $ o + $ d ) n i d s ) ,  

where $O is the incident wave train ($, = - iAgw-l exp [iK(x cos p + y sin /3) + KZ] for an 
arbitrary angle of incidence p )  and $a is the diffractive field due to the bodies. The 
dependence of X S i  upon $a can be removed by applying Green’s theorem to Qd and $i, 
together with the boundary conditions on each of the bodies, to  give 
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after a further application of Green's theorem to q50 and $i. The behaviour of $,, and q5i 
is known on S,, enabling the integral to be evaluated using the method of stationary 
phase, 

XSi  = pgA gi(P)e-sT. (A 2) (p")* 
Substitution for g i ( p )  into the expression (A 1 )  for the damping matrix then yields 
expression (2 .2) .  

The heave exciting force on a 'thin ship' 

The derivation of (4.1) proceeds as follows. The thin ships are equally spaced in a line 
along they axis, the nth being centred a t  L,: x = 0, - H < z < 0, nd - L < y < nd + L.  
It is symmetric about x = 0, being described by x = [(y, z )  = s (H + z )  H .  

The incident wave has elevation AeK" cos ( K X  cos p -t KY sin /3 -t w t )  and a corre- 
spondingvelocitypotentialRe{q5,eiwt)withq5, = - iAqw-lexp[iK(xcosp+ysinp) + K X ] .  

Since the body is thin the condition of zero normal velocity can be applied on L, and 
the heave exciting force on the nth body is 

where the integration is over both sides of the ship. Now the diffracted potential c $ ~  is 
odd in x and hence does not contribute to  X,,(p). Taking into account both sides of 
the ship, we get 

X,,(P) = -- ziwp'//Lw $,dzdy 
H 

4pgAeL( 1 - e-KH) sin (KL sin p )  eiKdn sin 
= -  

K H  KL sin p 
in agreement with (4.1). 
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